
WHITE PAPER: Binding Ratio & Stick Slip PAGE 1

Demystifying the 2:1 Ratio and  
the Stick-Slip Phenomenon 
A Technical Whitepaper Explaining the  
Theory Behind the Binding Ratio and  
How it Relates to Stick-Slip

Introduction
One of the most frequently misunderstood principles regarding the 
use of plain bearings is something known simply as the 2:1 Ratio. 
Most engineers are taught there is this magic ratio (2:1) of allowable 
moment arm length to bearing length; which cannot be violated or the 
application will fail. This paper will explore the history behind the 2:1 
Ratio, the mathematical theory supporting the rule, practical limitations of 
implementing the 2:1 Ratio and finally some simple troubleshooting steps 
which can be taken to overcome any problems.

History
Since the 2:1 Ratio was first introduced to the marketplace by PBC Linear 
(originally the Pacific Bearing Company) in the 1990’s, it has been quickly 
adapted by most self-lubricating, linear plain bearing manufacturers 
as one of the guiding principles regarding their use. In the 1980’s, PBC 
invented and began to commercially produce the first plain bearing 
which were size interchangeable with linear ball bearings. This led to a 
new learning curve for engineers; which were primarily used to working 
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with ball based systems or bronze bearings with higher coefficients of 
friction. The plain bearing systems excelled in many environments where 
recirculating ball based systems failed miserably; including: very hot 
or cold, dirty, high vibration, high static loads, non-lubricated and short 
stroke (<2 x bearing length). The plain bearings were not found to be an 
acceptable replacement for applications which required a low coefficient 
of friction, very high speeds or high moment loads. In fact, some 
applications with high moment loads were known to simply bind up and 
all motion would cease, or it would become jerky (also known as stick-slip 
motion). Early on, the assumption was that plain bearings could not handle 
the same moment load as an equivalent sized recirculating ball bearing. 
What engineers failed to realize is there was a geometric relationship 
which describes the allowable working space of plain bearings—that is 
until PBC published the 2:1 Ratio. Two decades later, some engineers still 
fail to realize the broad scope of this rule and that it actually applies to all 
linear motion systems, not just plain bearings! In addition, the 2:1 Ratio 
isn’t always “2:1”. Depending upon the unique criteria of each application, 
the actual ratio may be larger or smaller than 2:1. For the purposes of this 
whitepaper, the 2:1 Ratio will be referred to as the “Binding Ratio”.

Definition
The “Binding Ratio” is officially defined as the maximum ratio of moment 
arm distance to bearing length which will not bind (prevent motion). The 
Binding Ratio is often displayed numerically as “X:Y,” where “X” is the 
moment arm distance and “Y” is bearing length. Typically, the value of 
“X” is divided by “Y” so that the ratio can be expressed as “X/Y:1”. In the 
specific case of this whitepaper, the ratio used is “2:1”. The binding ratio 
can be theoretically defined using mathematics; however, several factors 
complicate practical implementation.

Theory
One of the key principles behind the “Binding Ratio” is Sir Isaac Newton’s 
3rd Law of Motion: for every action there is an equal and opposite 
reaction. The remainder breaks down to basic statics and dynamics 
equations. When a force is applied to a bearing at some distance (D1) 
away from the center of the bearing, a moment force is created. In order 
to resist the moment, two resulting forces are created at each end of the 
bearing. When these resulting forces are multiplied by the Coefficient 
of Friction, a drag force is created. At some point the drag force will 
surpass the drive force and motion will cease. This paper will show that 
the size of the drive force is irrelevant as the maximum moment arm (as 
a ratio to bearing length) is limited solely by the Coefficient of Friction. 
The remainder of this section will show the derivations and proof of this 
concept for two different situations.

The example will be where a single force (F1) is being applied to a linear 
bearing system at a known distance (D1). Assuming the bearing system 
and moment arm are a rigid body, motion will be in the same direction 
that F1 is applied. It can also be assumed that linear bearing systems 
are designed to allow only one degree of freedom; which is the axis of 
motion. Figure 1, to the right, is PBC’s standard mini-Rail product. Figure 
2, next page, shows the bearing with a force (F1) being applied to it at 
a known distance (D1) as well as the length of the bearing (L1). For the 
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purposes of keeping these equations simple, an assumption is made that 
the applied force (F1) is being applied in a single plain and is parallel to the 
direction of travel. Figure 3 repeats the values shown in Figure 2, and then 
adds the equal and opposite reaction forces (F2 & F3); which are a result 
of the applied moment. Forces F2 and F3 are applied at points A and B, 
respectively.

Figure 4, below, then shows the drag forces (F4 & F5); which are caused by 
the resulting forces (F2 & F3) multiplied by the coefficient of friction of the 
carriage versus the rail (μ) when the carriage is in motion. Figure 5, top 
of next page, shows the complete system and all forces acting upon the 
carriage.

Building upon Sir Isaac Newton’s 1st Law of Motion (an object at rest will 
stay at rest until the vectored sum of all forces acting upon it is greater 
than zero), in order for the carriage to accelerate the applied force (F1) 
must be greater than the sum of the drag forces (F4 & F5). In practice, there 
is an additional drag force due to the weight of the carriage plus the weight 
of the payload. For now, this additional resistance will be disregarded.

Equation 1:
Acceleration (motion) > 0  F1 > F4+ F5

Equation 2:
F4 = µF2 and F5 = µF3

Equation 3:
Acceleration > 0  F1 > µF2+ µF3

Equation 4:
Acceleration > 0  F1 > µ(F2+ F3)

To begin the statics equations, point C is chosen to be the fulcrum and 
all forces and moments are summed around this point. Figure 6, ext 
page, shows the lever arms resulting from the applied forces (F1) and the 
resulting force (F2 & F3) with an origin of point C.

Since linear bearing systems are designed to be rotationally stable, it 
is known that the sum of the moments (about point C) is equal to zero 
(Equation 5, below). Equations 6 – 10, below, show the simplification of 
this equation in order to solve for the resulting forces F2 and F3.

Equation 5:
Rotationally Stable  ΣмZ = 0

Equation 6:
ΣмZ = 0 = (F1 × D1) − (F2 × L1_

2) − (F3 × L1_
2)

Equation 7:
(F1 × D1) = (F2 × L1_

2) + (F3 × L1_
2)

Equation 8:
(F1 × D1) = L1_

2 (F2 × F3)

Equation 9:
2 x F1

L1

 x D1  = (F2 × F3)

 
Fig. 2: Force (F1) is Applied

 
Fig. 3: First Reaction Forces (F2 & F3)

 
Fig. 4: Second Reaction Forces  
(F4 & F5)
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At the transition point, where the bearing transitions from binding to 
motion (or vice-versa), the acceleration value from Equation 4 transitions 
from a negative to a positive value. In order to solve for this, set the 
value to zero to find the specific transition point. The following group of 
equations is valid only at the transition point, where acceleration is equal 
to zero.

Equation 10:
Acceleration = 0  F1 = µ(F2+ F3)     Valid at Transition Point

Equation 11:

F1 = µ(2 x F1
L1

 x D1) = 2 x µ x F1
L1

 x D1     Valid at Transition Point

Equation 12:
F1
F1  = 1 =  2 x µ

L1

x D1     Valid at Transition Point

As mentioned before, in order for an application to be capable of motion, 
the driving force must be greater than the sum of the drag forces. 
Equation 12, above, shows that there is a relationship between the 
Coefficient of Friction (μ), bearing distance and moment arm distance. 
Rearranging Equation 12 will derive the three conditions that must be 
met in order for an application to be capable of motion. Equations 13-15, 
below, will separate the maximum allowable Coefficient of Friction (μ), 
the maximum allowable moment arm distance (D1) and the minimum 
allowable bearing length (L1).

Equation 13:
L1_min = 2 × µ × D1  L1 >2 × µ × D1     Condition 1

Equation 14:
D1_max =

  l1 
2 x µ   D1 <

  L1 
2 x µ      Condition 2

Equation 15:
µmax =

  L1 
2 x D1   µ1 <

  L1 
2 x D1      Condition 3

At the beginning of this paper, the claim was made that the Binding Ratio 
is a pure derivative of the coefficient of friction and the relationship of 
the bearing length to moment arm distance. In order to better illustrate 
this point, a graph can be created showing what the maximum allowable 
Binding Ratio would be for any coefficient of friction. Figure 7, below, 
illustrates that the smaller the coefficient of friction, the larger the Binding 
Ratio can be. For this figure, Equation 14 was used and the bearing length, 
L1, was set to a value of L1 = 1. The X-axis shows different values for 
the coefficient of friction, μ, and the Y-axis shows the Binding Ratio. For 
illustration purposes, the lowest common coefficient of friction commonly 
found in linear motion systems today is in recirculating ball type linear 
guides where the coefficient of friction can be as low as μ = 0.001. Using 
Equation 14, and setting the bearing length to 1, the result is a Binding 
Ratio of 500:1! The highest coefficient of friction found in modern day 
plain bearings is μ = 0.5; however, most modern day materials have a 
value of μ = 0.1 - 0.25. Figure 7 graphically illustrates the importance of a 
low coefficient of friction for applications with a high moment load and a 
large moment arm distance.

 
Fig. 5: All Forces

 
Fig. 6: Free Body Diagram
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Assumptions
The assumption was made that all forces 
are applied in an axis which is parallel 
to the direction of travel. This eliminates 
the complication and redundancy of 
vector mathematics. In most practical 
applications, the force would actually be 
applied at some non-parallel angle which 
would require the force to broken down into 
its X-Axis, Y-Axis and Z-Axis vectors. The 
end result would be the same as shown 
herein. The only difference is that the 
formulas shown above would have to be 
repeated three times, once for each axis.

Stick-Slip
One of the most frustrating and potentially devastating problems an engineer 
can face is stick-slip motion. It is particularly devastating because it is not 
planned for and can bring production to a standstill until the problem is 
solved. This paper will explore one of the causes for stick-slip. The previous 
section of this paper discussed the coefficient of friction (μ) as it was a 
single value. In reality, every material has two coefficients of friction: static 
(μs) and dynamic (μk). In general, the coefficient of static friction is greater 
than or equal to the coefficient of dynamic friction. Using Machinery’s 
Handbook as a reference, a basic comparison of materials showed that, 
on average, the coefficient of dynamic friction was equal to 65% of the 
coefficient of static friction. This value will certainly be different for every 
material, so be sure to check the specific value for designed in materials.

Building upon what was learned in the previous section (the greater the 
coefficient of friction, the lower the Binding Ratio will be), the difference 
between the static and dynamic coefficient of friction means that there 
could possibly be some designs which 
will work when the system is already 
moving, but will not work when the system 
is at rest. Figure 7, to the right, plots the 
Binding Ratio for different static and 
dynamic coefficients of friction. Figure 
8 is a detail view of Figure 7. There are 
two curves plotted in each figure. The 
top curve represents the Binding Ratio 
curve based upon the static coefficient of 
friction. The bottom curve represents the 
Binding Ratio for the dynamic coefficient 
of friction based upon the assumption 
that the dynamic coefficient of friction 
is 35% less than the static coefficient of 
friction. The blue area at the bottom of 
the plot is the “free motion zone” where 
motion will not theoretically be interrupted 
by binding due to the Binding Ratio. The 
red area is the area between the curves 
of the Binding Ratio for the static and 

  
Fig. 7: Coefficient of Friction vs. 
Ratio of Max Lever Arm Distance 
to Bearing Length

 
Fig. 8: Coefficient of Friction 
vs. Max Lever Arm Distance for 
Typical Plain Bearing Systems

Coefficient of Friction vs Ratio 
of Maximum Lever Arm Distance 

as a ratio to Bearing Length

Figure 7: Coefficient of Friction vs Max 
Lever Arm Distance for Bearing for 

Present Day Bearing Systems

Figure 8: Coefficient of Friction vs 
Max Lever Arm Distance for 

Typical Plain Bearing Systems

Coefficient of Friction vs Ratio 
of Maximum Lever Arm Distance 

as a ratio to Bearing Length
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dynamic coefficients of friction. The white area above the curves is the 
“no motion” zone where it is likely that motion will not occur. It is the claim 
of the author that stick-slip is more likely to occur for applications where 
the Binding Ratio is in the red zone (the area between the curves).

Figures 7 and 8 are not meant to be used as an engineering reference 
chart, rather, they should be used for illustration purposes only. The values 
for the X-Axis of both graphs have been removed to prevent accidental 
misuse. Instead, these images should be used to illustrate the point 
that all bearing systems have two different coefficients of friction (static 
& dynamic) and therefore, they also have two different Binding Ratios. 
Linear recirculating ball based systems often have static and dynamic 
coefficients of friction which are almost identical, so there is little change 
in the binding ratio. Plain bearings typically have a larger difference 
between the static and dynamic coefficient of friction, so there will be a 
larger variance in the binding ratios.

Stick-slip is often described as a temporary cycle of alternating rest 
and motion. Some systems experience stick-slip motion only at certain 
locations during the cycle. If this type of motion is repeatedly observed at 
the same location, then it is likely that an unknown force is acting upon 
the system at that location. The most common external forces are caused 
by misalignment of the linear rails, change of dimension for the rails, or 
an imperfection in the rail (which can also be caused by damage). These 
additional forces are not accounted for in Figure 5 and all of the equations 
shown in the white paper. These forces must be multiplied by the force 
of friction and then added to the resultant forces from the moment load. 
Looking back to Equation 10, it can be rewritten as Equation 16, below, to 
account for these additional forces. Provided that the applied force, F1, is 
still larger than the frictional forces, then motion will still occur. However, if 
the sum of the frictional forces now exceeds the applied force, binding will 
occur.

Equation 16:
Acceleration = 0  F1 = µ(F2 + F3) + µ(other forces)    Valid at Transition Point

Since the system was likely in motion before these additional frictional 
forces were applied, the momentum of the system will help push through 
the momentary zone where these external forces are applied. As the 
system moves through this zone, the applied force will re-engage to cause 
a short burst of motion before resulting in binding again. The momentum 
will again help push the system through the binding where the cycle can 
repeat. This is stick-slip in its simplest form.

Practical Complications, Limitations & Troubleshooting
By far, the largest complication for working with the Binding Ratio, is that 
the actual Coefficient of Friction is hard to quantify and may change based 
upon environmental circumstances. To further complicate matters, some 
manufacturers either do not list the Coefficient of Friction in their product 
literature or may only list the dynamic Coefficient of Friction to make their 
products appear more favorable. Another issue with accurately using the 
Binding Ratio is the additional, unaccounted and often unpredictable forces 
caused by misalignment. In addition, some of the more advanced bearing 
materials, such as PBC’s FrelonGOLD®, will actually have its Coefficient of 
Friction change based upon the load applied. A good rule of thumb is to 

...all bearing 
systems have two 

different coefficients 
of friction (static 
& dynamic) and 

therefore, they also 
have two different 

Binding Ratios. 



WHITE PAPER: Binding Ratio & Stick Slip PAGE 7

take the expected coefficient of friction and to double it. This ensures there 
will be adequate safety factor within the design.

Another complication results from using the incorrect bearing length. 
Aside from mathematical and unit conversion errors, the most common 
problem is a result of using the wrong bearing length in the formulas 
shown earlier in this paper. This is very easy to do because the bearing 
length is not the overall bearing length, which is the most common 
assumption. Instead, bearing length means the length of the bearing 
carrying the load. In a ball bearing system, this is typically called the “load 
zone”. Few manufacturers publish specifications as to the details of their 
load zone, so engineers have to guess a specific bearing (“load zone”) 
length. Another common mistake happens for applications with multiple 
bearings on a single shaft. The correct bearing length is the center to 
center distance between the bearings and not the overall length (outside 
edge to outside edge length).

There are several steps an engineer can take to troubleshoot binding and 
stick-slip. At this point, we should note that this white paper is not intended 
to be an all-inclusive troubleshooting guide. Instead, it will list a few 
practical ideas which are based upon the theoretical principles previously 
discussed. There are five very simple concepts which, if implemented, 
should solve a binding/stick-slip problem for most applications. The five 
simple concepts are, in no particular order:

 Reduce Moment Arm Distance  Remove External Forces 

 Increase Bearing Length  Reduce Bearing Friction

 Add a Counter Balance

The most logical change to prevent binding would be to reduce the 
moment arm distance. Reducing this distance will move the application 
out of the binding or stick-slip zone and bring it down into the smooth 
motion zone (reference: Figures 7 & 8, above). This is a great concept 
in theory; however, this is simply not an option for most applications as 
other system constraints prevent this distance from changing. The next 
suggested change would be to make the bearing length longer. This can 
be accomplished by switching to a longer bearing/carriage, increasing 
the spacing between multiple bearings or adding a second bearing to 
a single bearing system. This may be a solution for many applications; 
however, not all systems can allow for a longer bearing length. In this case, 
the next suggestion would be to try to add a counterbalance to reduce 
the moment which will reduce the resulting forces and consequently the 
frictional forces (reference: Figure 5, above). Again, this may not work for 
some applications as there may not be space to add a counterweight or 
overall system constraints prevent the additional weight or cost of the 
counterweight. A different solution would be to attempt to remove any 
external forces. These most often are a result of either misalignment 
or damage to a shaft/rail. Damaged shafts/rails may or may not be 
able to be fixed. They may have to be replaced in order to eliminate the 
additional forces encountered at the damaged portion. Attempting to fix a 
misaligned set of rails can often add considerable time and expense to the 
assembly process. This may be alright for a low quantity build, but is often 
unacceptable for mass production; which renders this option impractical 
for many applications. The final solution addressed by this paper would be 
to reduce the bearing friction. There are two primary ways to accomplish 
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this: by adding or changing the type of lubrication to reduce the coefficient 
of friction or by changing the bearing type to a different style with a lower 
coefficient of friction.

Some applications will experience smooth motion in one direction and 
binding in the opposite direction. This is almost always a result of forces 
which were previously unaccounted for. Typically the forces are accounted 
for in one axis, but forces are seldom applied in only one axis. It only takes 
one axis having a force applied at a distance farther than the Binding 
Ratio distance to have the whole system experience stick-slip motion or 
complete binding. Troubleshooting this issue can be especially frustrating 
as the system seems to work half of the time. In this case, the most 
commonly applied solution is to increase the bearing length (either by 
increasing the distance between the bearings or switching to an extended 
length bearing.

The solutions provided in this white paper are listed in no particular order. 
Each application is unique and the solutions listed should be applied in 
whichever order is most beneficial to each specific application.

Conclusion
The Binding Ratio is a frequently misunderstood mechanical principle. 
Even though engineers are taught about 2:1 early on, misconceptions 
about the rule’s implications still cause numerous stalling and application 
failures. After reading this white paper, you should have a more clear 
understanding of the mathematics behind the rule and a better 
comprehension of how to implement it. Just remember to be careful 
during the implementation of the Binding Ratio to ensure there is a proper 
safety factor, or else unpredictable and unaccounted forces may cause 
stick-slip and/or complete binding. This leads to system failure, and can 
create additional production costs, re-design time and lost profits. Keep 
your linear motion systems running by staying in the free motion zone and 
ahead of the Binding Ratio!

LITTWPGEN-001    08-2019

Further Information
If you’re still having difficulties, contact 
a PBC Linear Application Engineer 
to discuss your application. You can 
contact an engineer directly by calling 
1.800.962.8979 (from within the USA) 
or +1.815.389.5600 (from outside the 
USA). If you prefer, e-mail an engineer at: 
appeng@pbclinear.com

Version
This is version 3 of the published white 
paper. Its format has been updated 20 
March 2019.

Update
As a result of questions from readers, 
Version 2 adds more information to the 
“Stick-Slip” and “Practical Complications, 
Limitations & Troubleshooting” sections. 
No other material changes were made.
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